

Seat	
No.	

M.Sc. (Part – I) (Semester – I) Examination, 2015

MICROBIOLO	– CBCS) DGY (Paper – II) Jues and Scientific Writing
Day and Date : Wednesday, 18-11-2015	Max. Marks : 70
Time: 10.30 a.m. to 1.00 p.m.	
N.B. : 1) Part – I question 1 i	s compulsory.
2) Attempt any four q	uestions from Part – II .
3) Figures to the righ	indicates full marks.
4) Answer to the two book.	Parts should be written in the same answer
PA	RT-I
Rewrite the following sentences by seatternatives:	lecting the correct answer from given
1) The Svedberg unit is used to expre	ss of particle.
a) Relative centrifugal field	b) Particle density
c) Sedimentation coefficient	d) Medium density
2) makes the content	of book easily accessible to its readers.
a) An index b) A table	c) Introduction d) References
3) The most commonly used detecto	in GLC is the
a) Electron capture	b) Flame ionization

c) Variable wavelength d) Nitrogen phosphorous

4) The relative centrifugal force is determined by the formula

a) $(1.118\times10^{-5}) (\text{rpm})^2(\text{r})$ b) $(1.118\times10^{-5}) (\text{rpm}) (\text{r})^2$

c) $(1.118\times10^{-5})^2$ (rpm) (r) d) (1.118×10^{-5}) (rpm)² (r)²

5)	The most convenient system of ci	ting references is
	a) Name and year system	b) Alphabet-number
	c) Citation order	d) Order of year
6)	Baiting technique is used for the is	solation of
	a) Protozoa b) Fungi	c) Algae d) Viruses
7)	can be used for des	alting of solutions.
	a) Ion exchange chromatography	b) Affinity chromatography
	c) Gel filtration chromatography	d) TLC
8)	GLC is used to separate	
	a) Lipids	b) Volatile organic compounds
	c) Proteins	d) Sugars
9)	is a brief summary of	of the information in a research document.
	a) Abstract b) Review	c) Conclusion d) Introduction
10)	is used as binder while	e preparing a slurry of stationary phase in TLC
	a) Calcium sulphate	b) Calcium carbonate
	c) Calcium chloride	d) Potassium sulphate
11)	In swing out rotors the cups or buc rotation.	kets attain position during
	a) Vertical b) Horizontal	c) Fixed angle d) Linear
12)	The scientific paper is written in	format.
	a) IMDAR b) IMRAD	
13)	How the results and interpretation published work is shown in	s agree (or contrast) with the previously
	a) Introduction	b) Results
	c) Acknowledgment	d) Discussion
14)	is used to separa	te large DNA molecules.
	a) PFGE	b) Agarose gel electrophoresis
	c) PAGE	d) PAGE-SDS electrophoresis

Attempt any	four questions	•
-------------	-----------------------	---

2.	Describe the principle, method and applications of density gradient centrifugation.	14
3.	Give the detail account of Good Manufacturing Practices and Good Laboratory Practices.	14
4.	Explain principle, materials and applications of High Performance Liquid Chromatography (HPLC).	14
5.	Write short answers (any two):	14
	a) Explain guidelines of writing a research paper.	
	b) Discuss how to write a project report.	
	c) Explain principal and application of nanofiltration.	
6.	Write short notes on (any two):	14
	a) Mechanism of ion exchange chromatography.	
	b) Describe principal and applicaitons of TLC.	
	c) Describe oral and poster presentation in conferences.	

Seat	
No.	

			(New CBCS)	ter – I) Examination MICROBIOLOGY ent Trends in Viro			
-		d Date : Friday, 20 10.30 a.m. to 1.00				Total Marks : 7	0
		2) . 3) . 4) .	Attempt any 4 que Figures to the rigl	1 is compulsory . estions from Part – II ht indicates full mark rt – I and Part – II are nly.	S.	be written in same	
			PA	RT-I			
1. F	Re	write the sentence	e by choosing cor	rect alternative from	the	following: 1	4
	1)	Viroids were disc	overed by				
		a) Diener	b) Puschner	c) Boin	d)	Baltimore	
4	2)	In lambda (λ) pha	agegen	e is responsible for th	e ly	sogenic state.	
		a) Q	b) A	c) R	d)	C1	
(3)	crystalli	sed the TMV first	time.			
		a) Harshey	b) Chase	c) Stanely	d)	Sanger	
4	4)	Breast Cancer in	mice is caused by	У			
		a) Raus Sarcoma	a virus	b) Adenovirus			
	_,	c) Poxvirus		d) Bittner virus			
ţ	5)	•	•	ses is originated from			
		•		b) Nuclear membrad) Golgi apparatus			
,	S)			,	•		
,	0)	Yolk sac is useful a) TMV	b) Rabies	c) Herpes simplex	, <i>Ч</i>)	Plant	
-	7)	has both	•	,	. u)	Tant	
,	7)	a) HIV	THINA AND DINA A	b) Reovirus			
		,		,			

c) Human cytomegalovirus d) Raus Sarcoma virus

P.T.O.

	8)	One step growth e	experiment was de	vised by			
		a) Watson	b) Crick	c) Lederberg	d)	Delbruck	
	9)	The name of orde	r in ICTV system a	always ends with su	ffix		
		a) Viridae	b) Virales	c) Virinae	d)	Vira	
	10)	virus car	n undergo antigenio	c shift.			
		a) Rabies	b) Hepatitis	c) Influenza	d)	Pox	
	11)			e up ofcap			
		a) 8	,	c) 32	d)	2	
	12)	Rabies virus is	•				
		,	•	c) Spherical	d)	Bullet	
	13)	• •	luces as ar				
			b) Antigen	,	d)	Immunogen	
	14)	•	ich has double stra		18	DI I'I '	
		a) Bunyavırus	b) Reovirus	c) Calcivirus	a)	Rnabidovirus	
			PAR	T – II			
At	tem	pt any four questi	ons from the follow	ving :			
2.		ke a detail account		omic organization, p	atho	ogenesis and	14
3.	Ex	plain in detail, mul	tiplication and cont	trol of HIV.			14
4.	Wı	rite short answer o	n any two of the fo	ollowing:			14
			structure, genomic	c organization and r	epr	oduction of DNA	
	b)		merging viral infect	tions.			
		-		ir mode of action an	d cli	nical use.	
5	\٨/١	rite short answers	(any two) ·				14
0.			gram of the influenz	za virus and add a n	ote	on antigenic shift	
	h)	•		rs involved in patho	aen	esis of viruses	
	,	•		changes in DNA and	_		
6.		rite short notes on	(any two) :				14
	,	Prions	iruooo				
	,	Catloging of the vi Cultivation of viru cell lines.		onated eggs, experi	mer	ntal animals and	

Seat	
No.	

M.Sc. – I (Semester – I) (CBCS) Examination, 2015 MICROBIOLOGY (Paper – IV) (New) Microbial Chemistry and Enzymology

Day and Date : Monday, 23-11-2015 Max. Marks : 70

Time: 10.30 a.m. to 1.00 p.m.

Instructions: i) Part – I is compulsory.

- ii) From Part II attempt any four.
- iii) All questions carry equal marks.
- iv) Figures to the right indicate full marks.
- v) Draw neat and labelled diagrams.

PART-I

1.	Re	write the following sentences by using o	orrect alternatives :	14
	1)	heteropolysaccharide	functions as tissue cementing	
		substance.		
		a) Glycogen		
		b) Capsular material of diplococcus pno	eumoniae	
		c) Peptidoglycan		
		d) Hyaluronic acid		
	2)	Proline is amino acid.		
		a) Sulfhydryl	b) Aromatic	
		c) Immuno	d) Basic	
	3)	Damage caused by free radicals is redu	uced by antioxidants like	
		a) Vit. A	b) Vit. C	
		c) Nicotinamide	d) Coenzyme	

4)	β carotene is precursor for		
	a) Vit. C	b)	Vit. B ₆
	c) Vit. A	d)	Vit. D
5)	are derivatives	of the perhy	drocyclo pentanophenanthrine.
	a) Terpenes	b)	Waxes
	c) Stearins	d)	Proteins
6)	is a fat soluble vi	tamin.	
	a) Vit. C	b)	Vit. B ₁
	c) Vit. B ₁₂	d)	Vit. A
7)	Lactose contain	and	sugars.
	a) Glucose, fructose	b)	Sucrose, glucose
	c) Glucose, galactose	d)	Xylose, glucose
8)	All enzymes are proteins excep	t	
	a) Isoenzymes	b)	Ribozymes
	c) Allosteric	d)	Kinases
9)	When fats are added in water	they conve	t into droplets and disperse, the
	process is called		
	a) Saponification	b)	Rancidity
	c) Emulsification	d)	Ammonification
10)	is simple enzym	ie.	
	a) Amylase	b)	Coagulase
	c) Trypsin	d)	Succinyldehydrogenase
11)	Terpene containing three isopre	enoid units a	re called
	a) Triterpene	b)	Tetraterpene
	c) Sesquiterpene	d)	Pentaterpene

12) Glycerin combines with three fatt	ty acids to form a simple lipid called	
a) Stearin	b) Triglyceride	
c) Glyceride	d) Terpene	
13) Maltose is an example of		
a) Monosaccharide	b) Polysaccharide	
c) Disaccharide	d) Triose	
14) Number of isoprenoid units in tri	iterpenes are	
a) 8	b) 6	
c) 4	d) 10	
	PART – II	
Explain kinetics of enzyme catalys	ed reaction.	14
Write in detail about classification of	of amino acids.	14
Write an essay on water soluble vit	tamins and their role.	14
Write short notes on (any two):		14
a) Induced fit and lock and key hyp	oothesis.	
b) Isoenzymes and their significan	ce.	
c) Leghaemoglobin and hemoglobin	n.	
Write short notes on (any two):		14
a) Ramchandran plot		
b) Chemical kinetics		
c) Bacterial rhodopsin.		
	a) Stearin c) Glyceride 13) Maltose is an example of a) Monosaccharide c) Disaccharide 14) Number of isoprenoid units in tr a) 8 c) 4 Explain kinetics of enzyme catalys Write in detail about classification of Write an essay on water soluble vir Write short notes on (any two): a) Induced fit and lock and key hyp b) Isoenzymes and their significant c) Leghaemoglobin and hemoglobi Write short notes on (any two): a) Ramchandran plot b) Chemical kinetics	c) Glyceride d) Terpene 13) Maltose is an example of a) Monosaccharide b) Polysaccharide c) Disaccharide d) Triose 14) Number of isoprenoid units in triterpenes are a) 8 b) 6 c) 4 d) 10 PART – II Explain kinetics of enzyme catalysed reaction. Write in detail about classification of amino acids. Write an essay on water soluble vitamins and their role. Write short notes on (any two): a) Induced fit and lock and key hypothesis. b) Isoenzymes and their significance. c) Leghaemoglobin and hemoglobin. Write short notes on (any two): a) Ramchandran plot b) Chemical kinetics

Seat	
No.	

M.Sc. (Part – I) (Semester – II) Examination, 2015 MICROBIOLOGY (Paper – V) (CGPA) Microbial Genetics

Day and Date: Tuesday, 17-11-2015 Max. Marks: 70

Time: 10.30 a.m. to 1.00 p.m.

N.B.: 1) Part – I question 1 is compulsory.

- 2) Attempt any four questions from Part II
- 3) Figures to the **right** indicate **full** marks.
- 4) Answer to the **two** Parts should be written in the **same** answer book.

PART-I

1. Rewrite the sentences after choosing the correct answer from the given alternatives.

14

- 1) The unit of DNA in which an individual act of replication occurs is called the
 - a) Replicon
 - b) Origin
 - c) Transcription unit
 - d) Operon
- 2) Triplet UAG is called as
 - a) Opal
 - b) Amber
 - c) Ochre
 - d) Opine
- 3) _____ factor places initiator tRNA at P site of the ribosome.
 - a) EF-Tu
 - b) IF 2
 - c) IF-3
 - d) EF-Ts

- 4) _____ enzyme functions as replicase in *E. coli*.
 - a) Polymerase I
 - b) Polymerase II
 - c) Polymerase III
 - d) Polymerase IV
- 5) Synthesis of RNA primers for DNA chain elongation is carried out by
 - a) RNA polymerase
 - b) RNA primase
 - c) DNA polymerase
 - d) RNA transcriptase
- 6) Overlapping genes are found in
 - a) ØX 174
 - b) E. coli
 - c) T₄ bacteriophage
 - d) MS_2
- DNA sequences containing transposase gene flanked by inverted repeats are called
 - a) IS elements
 - b) Simple transposons
 - c) Composite transposons
 - d) Bacteriophage elements
- 8) DNA replication by semiconservative mode in *E. coli* was experimentally proved by
 - a) Watson and Crick
 - b) Meselson and Stahl
 - c) Zinder and Lederberg
 - d) Delbruck and Delbruck

d) Exonuclease

9)	Model for replicative transposition was proposed by a) McClintock b) Shapiro c) Luria d) Dupra
10)	E. coli polynucleotide ligase requires for its activity.a) FADb) FMNc) NADd) NADP
11)	Transposon Tn5 carries gene for resistance. a) Kanamycin b) Ampicillin c) Penicillin d) Chloramphenicol
12)	Helix unwinding during replication is accomplished by a) DNA helicases b) DNA gyrase c) DNA polymerase I d) DNA polymerase II
13)	Jumping genes were discover by a) Barbara McClintock b) Beadle and Tatum c) Lederberg d) Delbruck
14)	Removal of thymine dimmers is carried out by a) DNA polymerase I b) DNA polymerase II c) DNA polymerase III

2.	What is genetic complementation? Explain in detail intergenic and intragenic complementation and add a note on citrons test of genetic function.	14
3.	Describe in detail detection, purification, amplification and rearrangement of plasmids.	14
4.	Explain experiments performed to prove that, DNA is genetic material in bacteria and viruses.	14
5.	Attempt any two of the following.	14
	a) Explain the techniquies and applications of DNA foot printing and DNA finger printing.	
	b) Discuss the rolling circle model of DNA replication.	
	c) Describe operon model with reference to arabinose operon.	
6.	Attempt any two of the following.	14
	a) Post transcriptional processing in Prokaryotes	
	b) RFLP	
	c) SOS repair.	
		

SLR-MM – 462

Seat	
No.	

		MICROBIC	· II) (CGPA) Examin DLOGY (Paper – VI siology and Metabo		
-	Date: Thursda	_		Max. Mark	s:70
Time : 1	0.30 a.m. to 1.0	0 p.m.			
	N.B. :	2) From Sect3) All question4) Figures to	s compulsory. ion II attempt any four ons carry equal marks. the right indicate full and labelled diagrams	marks.	
		S	SECTION - I		
1. Rev	write the followin	g sentences b	y using correct alternat	ives.	14
1)	is c	onsidered as a	ncestor of mitochondri	a.	
	a) R. Prowazel	<u>kii</u>	b) <u>Nocardia</u>		
	c) <u>Ureaplasma</u>		d) <u>Chlymydea</u>		
2)	phos	phate molecule	s are taken up for flavin l	inked electron transpo	rt
	a) 2	b) 3	c) 4	d) 5	
3)	Dioxygenases	are involved in	oxidation of		
	a) aromatic amc) aromatic hyd		b) aliphatic hyd d) aliphatic am		
4)	Major mechanisa) Alpha	sm of fatty acid	oxidation is c c) Omega	oxidation. d) Delta	
5)	Iron porphyrin (a) Chlorophyll c) Inter lenkins		sent in structure of b) Carotenoids d) Cytochrome		

6)	One gram carbon degradation.	lydrates releases			kilocalories of heat on
	a) -4.5	b) +4.5	c)	-4.9	d) +4.9
7)	When fats are ac		y ar	e converted	l into droplets and get
	a) Hydrolysis		b)	Saponificat	ion
	c) Rancidity		d)	Emulsificat	ion
8)	The enzyme catal	yzing exchange o	f Na	+ and K+ is c	alled
	a) Na+, K+ perme	ase	b)	Na+, K+ tra	nsferase
	c) Na+, K+ Atpase	e	d)	Na+, K+ pho	osphatase
9)	Phosphotransfera	se also regulate		enzyme	e.
	a) Adenylate cycle	ase	b)	Adenylate a	acylase
	c) Adenylate kina	se	d)	Adenylate r	eductase
10)	Cytochrome oxida	ase is nothing but			
	a) Cytochrome c	, c ₂	b)	Cytochrom	e b c
	c) Cytochrome c ₂	₂ c ₃	d)	Cytochrom	e a a ₃
11)	Mitochondrial elec	ctron transport sys	tem	is	
	a) Linear		b)	Branched	
	c) Three dimension	onal	d)	Two dimens	sional
12)	enzyn	ne involved in conv	ers/	ion of nucled	sides to nucleotides.
	a) Nucleoside oxi	dase	b)	Nucleoside	kinase
	c) Nucleoside red	luctase	d)	Nucleoside	transferase
13)	contai	n isoprenoid units.			
	a) Cytochrome a		b)	Cytochrom	e b
	c) Coenzyme		d)	Ubiquinone	
14)	Phycobilins are or	nly present in red a	alga	with excepti	on of
	a) Cyanobacteria		b)	Corynebact	<u>teria</u>
	c) Clostridia		d)	Citrobacter	

SECTION - II

At	tempt any four of the following:	
2.	Write an essay on biosynthesis of saturated fatty acids.	14
3.	Write in detail degradation of aromatic hydro carbons.	14
4.	Write an essay on photosynthetic and nonphotosynthetic electron transport chain.	14
5.	Give an account of Denovo synthesis of pyrimidines.	14
6.	Attempt any two of the following.	14
	i) Write short note on drug metabolism.	
	ii) Active transport.	
	iii) Theories of ATP formation.	
7.	Answer any two of the following:	14
	i) Write note on gentisate pathway.	
	ii) Simple and facilitated diffusion.	
	iii) Omega oxidation.	

Seat	
No.	

M.Sc. (Semester – III) Examination, 2015 MICROBIOLOGY (CGPA) Paper – IX: Molecular Biology and Genetic Engineering

Day and Date: Monday, 16-11-2015 Max. Marks: 70

Time: 2.30 p.m. to 5.00 p.m.

Instructions: 1) Part – I, question 1 is compulsory.

- 2) Attempt any four (4) questions from Part II.
- 3) Figures to right indicate full marks.
- 4) Answers to Part I and Part II are to be written in **same** answer booklet **only**.

PART-I

1.	A)		ewrite the sentendernatives.	ces after choos	ing	correct answ	er f	rom the given	7
		1)	detection of suc	cessful ligations	s in	vector based	I ge	•	
			a) isolation	b) separation	C)	screening	a)	none	
		2)	DN	IA molecules ar	e s	ometimes cal	led	'Chimeric DNA'.	
			a) cDNA		b)	Recombinan	t		
			c) Both a) and b))	d)	None			
		3)	vec	•	asm	nids that can p	rop	agate in eukaryotes	
			a) Phagemid	b) Phasmid	c)	Shuttle	d)	None	
		4)	pBR 322 is	base p	airs	s in length.			
			a) 4361	b) 4631	c)	4136	d)	416	
		5)	Dosage comper elegans which is	-		n other orgar	nism	ns like Caenorhabditis	
			a) fruit fly		b)	roundworm			
			c) plant species	3	d)	all of these			

	6)	To detect hybridization of the pr tagged with a non-radioactive m	obe to its target sequence, the probe is olecular marker	
		a) Digoxigenin	b) Phosphorus	
		c) Both a) and b)	d) None	
	7)	Maxam-Gilbert sequencing requiend of DNA.	res radioactive labeling at one	
		a) 3'	b) 5'	
		c) Both a) and b)	d) None	
1.	a) b) c) d) e) f)	nswer the questions or define the Homopolymer tailing Metabolic engineering PUC 1 Transfect ion Genetic load DNA ligase DNA fingerprinting.	following:	7
		PA	RT – II	
At	tempt	any four questions from the follo	wing:	
2.	What	is genetic engineering? Explain i	n detail vectors used in genetic engineering.	.14
3.	•	in in detail how bacterial recombi daptation.	nation processes are beneficial for selection	14
4.	Expla	in in detail 'Nucleic acid Hybridiz	ation'.	14
5.	Write	short answer on any two of the	following:	14
	a) D	iscuss the process of 'Polymeras	se Chain Reaction'.	
	b) Bı	riefly describe methods 'Dosage	Compensation'.	
	c) E	xplain in brief application of recor	nbinant DNA technology.	
6.	Write	short notes on any two of the fo	llowing:	14
	a) Le	egal aspects in Genetic Engineer	ing	
	b) N	orthern Blotting		
	c) 'R	Radioactive Tracer'.		
				

Seat	
No.	

M.Sc. – II (Semester – III) (C.G.P.A.) Examination, 2015 MICROBIOLOGY

Paper - X: Health Care and Diagnostic Microbiology

Day and Date : Wednesday, 18-11-2015 Max. Marks : 70

Time: 2.30 p.m. to 5.00 p.m.

Instructions: 1) Part – I, Question 1 is compulsory.

- 2) Attempt any four (4) questions from Part II.
- 3) Figures to right indicate full marks.
- 4) Answer to Part I and Part II are to be written in same answer booklet only.

PART - I

1. Rewrite the sentences after choosing the correct answer from the given alternatives:

14

- i) Which of the following bacteria toxin bind to the nerve cells, preventing chemical communication between nerve and muscle cells?
 - a) Diphtheria toxin
 - b) Botulinum toxin
 - c) Escherichia coli endotoxin
 - d) Erythrogenic toxin
- ii) Which of the following antibiotic DO NOT affect protein synthesis?
 - a) Actinomycin D

b) Chloramphenicol

c) Streptomycin

- d) Tetracycline
- iii) Which of the following is NOT true for exotoxins?
 - a) The exotoxins can work by binding and entering the host cell
 - b) They can cause toxaemia
 - c) They rarely have enzymatic activity
 - d) They can be converted to toxoids

	–	
11/1	Penicillin inhibits	svnthesis
1 V J	I EUCHILI HIIIDIG	องเมเตอเอ

a) Protein

b) Cell wall

c) membrane

d) DNA

a) Micromonospora b) Penicillium c) Streptoverticillium d) Streptomyces xiv) _____ acts as folic acid intermediate antagonists. a) Trimethoprim b) Sulphonamides d) None of these c) Both (a) and (b)

-3-

SLR-MM - 466

Allemplary rous (+) questions nom ant - i	Attempt any four	(4) questions	from Part - I
---	------------------	---------------	---------------

2.	Write in detail on "Mechanism of action of Penicillin and Bacitracin".	14
3.	Write in detail on "Detection of antibody antigen reaction".	14
4.	Write essay on "Immunohistochemistry (IHC)".	14
5.	Write in short on any two of the following:	14
	a) Beta lactamase, Extended Spectrum Beta Lactamase (ESBL), Carbapenase Enzymes causing antibiotic resistance in bacteria.	
	b) Florescence in Situ Hybridizaiton (FISH).	
	c) Adhesion and invasion.	
6.	Write short notes on any two of the following:	14

- a) Microbial toxins.
- b) Antibiotic sensitivity testing by disc method.
- c) Polymerase chain reaction.

Seat	
No.	

a) Mice

b) Cat

M.Sc. – II (Semester – III) (C.G.P.A.) Examination, 2015 MICROBIOLOGY

Bioprocess Technology and Fermentation Technology (Paper - XI)

Day and Date: Friday, 20-11-2015

Time: 2.30 p.m. to 5.00 p.m.

N.B.: 1) Part – I, Q. 1 is compulsory.

2) Attempt any four questions from Part – II.

PART-I

- 3) Figures to the **right** indicate **full** marks.4) Answers to the **two** Parts should be written in the **same**
 - answerbook.

1. Rewrite the following sentences by selecting correct answers from given alternatives. 14 i) Brownian motion is related with ____ a) Impation b) Diffusion c) Precipitation d) Crystallization ii) is a sensitive analytical tool which converts biological signals into electrical signals. a) Biosensor b) Bioprocess c) Bioproduct d) Bioengineering iii) _____ is a right granted by Govt. to an inventor. a) Copyright b) Destruction d) None of these c) Patent iv) Distillation is used for recovery of _____ a) Penicillin b) Vit. B₁₂ c) Amylase d) Ethanol v) Allergy testing of product is carried out on _____

c) Rabbit d) Guinea pig

vi)	Molasses is a waste from	industry.	
	a) Dairy	b) Tannery	
	c) Minery	d) Sugar	
vii)	is a test organism used	d for penicillin bioassay.	
	a) S. aureus	b) E. coli	
	c) Shigella	d) Vibrio	
viii)	Crowded plate technique is used	for screening of	_producers.
	a) Antibiotic	b) Amylase	
	c) Vit. B ₁₂	d) Ethanol	
ix)	Vortex formation in fermentor is de	ecreased by	
	a) Spargers	b) Aerators	
	c) Baffles	d) Biosensors	
x)	Genetic engineering is used for st	rain	
	a) Preservation	b) Sterilization	
	c) Cultivation	d) Improvement	
xi)	is used for streptomy	cin production.	
	a) Str. griseus		
	b) Asp. niger		
	c) Pen. chrysogerum		
	d) B. amylolyticus		
xii)	Lab scale fermentor have	litre capacity.	
	a) 1-5	b) 100-200	
	c) 500 – 700	d) 1000 – 5000	
xiii)	is an example of edibl	e mushroom.	
	a) A. niger		
	b) Agaricus bisporus		
	c) Rhizobium		
	d) None of these		
xiv)	is used for production	of L-lysine.	
	a) Cory. diphtheria	b) Cory. glutamicum	
	c) Asp. niger	d) Str. griseus	

At	Attempt any four questions:			
2.	Explain in detail quality control in fermentation industry.	14		
3.	Describe in detail bioreactor design and operation.	14		
4.	Describe in detail various raw materials used for designing fermentation media and media sterilization.	14		
5.	Describe in brief any two : i) Bioethics ii) Streptomycin fermentation iii) Product recovery.	14		
6.	Write short notes on any two : i) Mushroom production ii) Environmental and genetic control of metabolic pathways iii) Whisky production.	14		

Seat	
No.	

c) Reproductive system

M.Sc. – II (Semester – III) (C.G.P.A.) Examination, 2015 MICROBIOLOGY (Paper –XII) Food and Dairy Microbiology

1 dod and bany h	wiciobiology
Day and Date: Monday, 23-11-2015 Time: 2.30 p.m. to 5.00 p.m.	Max. Marks : 70
N.B. : I) Part I question 1 is comp II) Attempt any four question III) Figures to the right indic IV) Answers to the two Parts answer book.	ons from Part II .
PART -	-
Rewrite the following sentences by selecting alternatives.	ng the correct answer from given 1 4
i) Discolouration of cheese is caused by	
a) Aspergillus niger	b) Penicillium roqueforti
c) Penicillium camemberti	d) E.coli
ii) Dahi provides an unfavourable medium to environment.	for the proliferation of pathogens due
a) alkaline	b) acidic
c) salty	d) neutral
iii) Food poisoning from Khoa is due to hea	at stable toxin produced by
a) Enterobacter	b) Streptococcus lactis
c) S.aureus	d) Salmonella
iv) Acetaldehyde is the major flavour comp	ound in
a) Cheese	b) Kumiss
c) Kefir	d) Yoghurt
v) The toxins produced by clostridium botuli	inum affect of human body.
a) Respiratory system	b) Nervous system

d) Digestive system

	a) Diglycerides	b) Phospholipids
		,
	c) Triglycerides	d) Cholesterol
vii)	Milk serum is milk plasma	minus
	a) casein micelles	b) water
	c) calcium	d) lactose
viii)	discolouration i	n both cream and butter is caused by Pseudomonas
	nigrifaciens.	
	a) Brown	b) Black
	c) Yellow	d) Blue
ix)	·	 b. sp. diacetylactis is a starter of choice in ces both acid and flavour.
	a) cheese	b) butter
	c) kefir	d) curd
x)	Homogenization	the bacterial count of ice-cream mix.
	a) increases	b) maintain
	c) decreases	d) reduces
xi)	The therapeutic potential	of fermented milk product was first suggested by
	a) Metchnikoff	b) Pasteur
	c) Koch	d) Alexander
xii)	is the acid alcoh	nol fermented milk product.
	a) Srikhand	b) Kumiss
	c) Yoghurt	d) Bulgarian sour milk
xiii)	The late blowing in proces	sed cheese is due to
	a) Penicillium	b) Leuconostoc
	c) Clostridia	d) Pseudomonas
xiv)	is the high acid	fermented milk product.
	a) Yoghurt	b) Cultured butter milk
	c) Kefir	d) Bulgarian sour milk

PART - II

Αt	Attempt any four questions :			
2.	Write an essay on microbiological examination of milk.	14		
3.	What is food preservation? Explain preservation of foods by drying.	14		
4.	Write an essay on bacterial food born infections.	14		
5.	Describe in brief (any two): a) Food preservation by use of irradiation. b) Swiss cheese. c) Chemical changes caused by micro-organisms during spoilage of food.	14		
6.	Write short notes on (any two):	14		

b) Ropiness

a) Concept of water activity.

c) Application of ultraviolet light in food industry.
